Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            For molecules and solids, we developed efficient MPI-parallel algorithms for evaluating the second-order exchange (SOX) term with bare, statically screened, and dynamically screened interactions. We employ the resulting term in a fully self-consistent manner together with self-consistent GW (scGW), resulting in the following vertex-corrected scGW schemes: scGWSOX, scGWSOSEX, scGW2SOSEX, and scG3W2 theories. We show that for the vertex evaluation, the reduction of scaling by tensor hypercontraction has two limiting execution regimes. We used the resulting code to perform the largest (by the number of orbitals) fully self-consistent calculations with the SOX term. We demonstrate that our procedure allows for a reliable evaluation of even small energy differences. Utilizing a broken-symmetry approach, we explore the influence of the SOX term on the effective magnetic exchange couplings. We show that the treatment of SOX has a significant impact on the obtained values of the effective exchange constants, which we explain through a self-energy dependence on an effective dielectric constant. We confirm this explanation by analyzing natural orbitals and local changes in charge transfer, quantifying superexchange. Our analysis explains the structure of weak electron correlation responsible for the modulation of superexchange in both molecules and solids. Finally, for solids, we evaluate Néel temperatures utilizing the high-temperature expansion and compare the results obtained with experimental measurements. In addition, we prove a lack of Φ-derivability of the considered theories.more » « lessFree, publicly-accessible full text available June 28, 2026
- 
            The accurate ab-initio simulation of molecules and periodic solids with diagrammatic perturbation theory is an important task in quantum chemistry, condensed matter physics, and materials science. In this article, we present the WeakCoupling module of the open-source software package Green, which implements fully self-consistent diagrammatic weak coupling simulations, capable of dealing with real materials in the finite-temperature formalism. The code is licensed under the permissive MIT license. We provide self-consistent GW (scGW) and self-consistent second-order Green's function perturbation theory (GF2) solvers, analysis tools, and post-processing methods. This paper summarizes the theoretical methods implemented and provides background, tutorials and practical instructions for running simulations.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Among various techniques designed for studying open-shell species, electron paramagnetic resonance (EPR) spectroscopy plays an important role. The key quantity measured by EPR is the g-tensor, describing the coupling between an external magnetic field and molecular electronic spin. One theoretical framework for quantum chemistry calculations of g-tensors is based on response theory, which involves substantial developments that are specific to the underlying electronic structure models. A simplified and easier-to-implement approach is based on the state-interaction scheme, in which perturbation is included by considering a small number of states. We describe and benchmark the state-interaction approach using equation-of-motion coupled-cluster and restricted-active-space configuration interaction wave functions. The analysis confirms that this approach can deliver accurate results and highlights caveats of applying it, such as a choice of the reference state, convergence with respect to the number of states used in calculations, etc. The analysis also contributes toward a better understanding of challenges in calculations of higher-order properties using approximate wave functions.more » « less
- 
            We present a new implementation for computing spin–orbit couplings (SOCs) within a time-dependent density-functional theory (TD-DFT) framework in the standard spin-conserving formulation as well in the spin–flip variant (SF-TD-DFT). This approach employs the Breit–Pauli Hamiltonian and Wigner–Eckart’s theorem applied to the reduced one-particle transition density matrices, together with the spin–orbit mean-field treatment of the two-electron contributions. We use a state-interaction procedure and compute the SOC matrix elements using zero-order non-relativistic states. Benchmark calculations using several closed-shell organic molecules, diradicals, and a single-molecule magnet illustrate the efficiency of the SOC protocol. The results for organic molecules (described by standard TD-DFT) show that SOCs are insensitive to the choice of the functional or basis sets, as long as the states of the same characters are compared. In contrast, the SF-TD-DFT results for small diradicals (CH 2 , [Formula: see text], SiH 2 , and [Formula: see text]) show strong functional dependence. The spin-reversal energy barrier in a Fe(III) single-molecule magnet computed using non-collinear SF-TD-DFT (PBE0, ωPBEh/cc-pVDZ) agrees well with the experimental estimate.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available